SMR Logo DOE Logo

Excerpt from the World Nuclear Association Website on Small and Medium Reactors

        High Temperature Gas-Cooled Reactors

Building on the experience of several innovative reactors built in the 1960s and 1970s, new high-temperature gas-cooled reactors (HTRs) are being developed which will be capable of delivering high temperature (up to about 1000°C) helium either for industrial application via a heat exchanger, or to make steam conventionally via a steam generator, or directly to drive a Brayton cycle gas turbine for electricity with almost 50% thermal efficiency possible (efficiency increases around 1.5% with each 50°C increment). Improved metallurgy and technology developed in the last decade makes HTRs more practical than in the past, though the direct cycle means that there must be high integrity of fuel and reactor components. Fuel for these reactors is in the form of TRISO (tristructural-isotropic) particles less than a millimetre in diameter. Each has a kernel (ca. 0.5 mm) of uranium oxycarbide (or uranium dioxide), with the uranium enriched up to 20% U-235, though normally less. This is surrounded by layers of carbon and silicon carbide, giving a containment for fission products which is stable to over 1600°C .

Fuel for these reactors is in the form of TRISO (tristructural-isotropic) particles less than a millimetre in diameter. Each has a kernel (ca. 0.5 mm) of uranium oxycarbide (or uranium dioxide), with the uranium enriched up to 20% U-235, though normally less. This is surrounded by layers of carbon and silicon carbide, giving a containment for fission products which is stable to over 1600°C.

There are two ways in which these particles are arranged: in blocks – hexagonal 'prisms' of graphite, or in billiard ball-sized pebbles of graphite encased in silicon carbide, each with about 15,000 fuel particles and 9g uranium. There is a greater amount of used fuel than from the same capacity in a light water reactor. The moderator is graphite.

HTRs can potentially use thorium-based fuels, such as highly-enriched or low-enriched uranium with Th, U-233 with Th, and Pu with Th. Most of the experience with thorium fuels has been in HTRs (see information paper on Thorium).

With negative temperature coefficient of reactivity (the fission reaction slows as temperature increases) and passive decay heat removal, the reactors are inherently safe. HTRs therefore do not require any containment building for safety. They are sufficiently small to allow factory fabrication, and will usually be installed below ground level.  


The following US reactor projects are utilizing high temperature gas cooled reactor (HTGR) technology:


Copyright 2017 by SMR