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Small Modular Reactors for Remote Sites
• Mission - Electricity generation to match needs of 

developing nations and remote communities without 
electrical grid connections
- Alaska, Hawaii, island nations of the Pacific Basin 

(Indonesia), and elsewhere
- Niche market within which costs that are higher than 

those for large-scale nuclear power plants are 
competitive

• “Report to Congress on Small Modular Reactors,” U.S. 
Department of Energy, May 2001
- “In considering possible replacement power plants, it 

appears that units less than 50 MWe would represent 
the majority of Alaskan generating capability, with units 
of 10 MWe or less being the most widely applicable.”
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Small Secure Transportable Autonomous 
Reactor (SSTAR)

• Current concept under investigation is 18 MWe (45 MWt)
• Proliferation resistance

- Core lifetime/refueling interval of 15, 20, or 30 years
- Restrict access to fuel during core lifetime
- Transuranic fuel – Self protective in the safeguards sense

• Molten lead (Pb) primary coolant – Nitride fuel
- Passive safety

• Autonomous operation
- Core power adjusts itself to heat removal from reactor system 

due to large inherent reactivity feedbacks without operator 
motion of control rods

- Active adjustment of control rods for burnup compensation, 
startup, and shutdown

• Fissile self-sufficient (Conversion ratio near unity)
- Realization of sustainable closed fuel cycle
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Small Secure Transportable Autonomous 
Reactor (SSTAR)

• Utilizes supercritical carbon dioxide (S-CO2) gas turbine 
Brayton cycle power converter
- Higher plant efficiency than Rankine saturated steam cycle
- Reduce balance of plant costs

• Natural circulation primary coolant heat transport
- Eliminate main coolant pumps

• Factory fabrication
- All reactor and balance of plant components including reactor 

and guard vessels
• Assembly of components into transportable modules

- Short modular installation and assembly times at site
• Full transportability by barge, rail, or road
• Flexibility to be adapted to generate other energy products

- Desalinated water or hydrogen
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Illustration of Lead-Cooled Fast Reactor
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Pb Coolant
• Enhanced passive safety

- Chemically inert – Does not react chemically with CO2 working fluid 
above ~ 250 °C.  Does not react vigorously with air or water/steam

- High boiling temperature of 1740 °C for Pb (1670 °C for Pb-Bi 
eutectic) - Core and heat exchangers remain covered by ambient 
pressure single-phase primary coolant and single-phase natural 
circulation removes core power under all operational and postulated 
accident conditions

• Potential to operate at higher temperatures than traditional liquid 
metal-cooled fast reactors
- Peak cladding temperature of ~ 650 °C

• Two lead-bismuth eutectic (LBE)-cooled land prototypes and ten 
submarine reactors were operated in Russia providing about 80 
reactor years experience
- Development of coolant technology and control of structural material 

corrosion
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Nitride Fuel
• Enhanced passive safety

- High melting temperature (> 2600 °C for UN)
- High temperature for significant decomposition of nitride (> 1500 °C)
- High thermal conductivity that together with Pb bond between fuel 

and cladding reduces the fuel-coolant temperature difference
• Compatible with fast neutron spectrum

- High atom density
- Nitrogen is enriched in N15 to eliminate parasitic captures

• Compatible with ferritic-martensitic stainless steel cladding and 
Pb coolant
- N is insoluble in Pb
- Bonded to cladding by molten Pb

• Low irradiation-induced swelling and fission gas release
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18 MWe (45 MWt)
• Optimal power level for a 20 year core lifetime, fixed fuel volume 

fraction of 0.55, fuel smeared density of 85 %, and core height-to-
diameter ratio of 0.8
- Minimizes maximum burnup reactivity swing over core lifetime
- Maximizes average discharge burnup limited by fluence limit

• Transuranic (TRU) fuel feed from LWR spent fuel following 25-year 
cooling time - Allows for decay of Pu241 isotope

• Low enrichment central region to reduce burnup swing
• Fuel volume fraction of 0.55 is low enough to facilitate natural

circulation heat transport from core to Pb-to-CO2 heat exchangers
• Seek to minimize burnup reactivity swing to less than one dollar
• Seek to maximize average discharge burnup

- Target of 100 MWd/Kg Heavy Metal
• Fast neutron fluence limit of 4.0 x 1023 n/cm2 on ferritic-martensitic

stainless steel cladding
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Average Discharge Burnup and Burnup
Reactivity Swing versus Core Size
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Average Discharge Burnup and Peak Fluence
versus Core Size
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SSTAR Core Neutronics Analyses
• Active core diameter of about 1.0 meter minimizes the burnup

reactivity swing for 20 year core lifetime, 0.55 fuel volume fraction, 
and 85 % fuel smeared density
- For fixed active core diameter, raising the core power increases the 

average discharge burnup
• Average discharge burnup is limited by the peak fast fluence limit

- Occurs at a core power of about 45 to 50 MWt for 20 year lifetime
• 45 MWt selected as optimum

- Specific to assumed 20 year core lifetime, fuel volume fraction of 
0.55, and 85 % smeared density

• More detailed geometry calculations were performed for 45 MWt
core to determine core performance
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Assumed Core Layout/Nodalization
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45 MWt SSTAR Neutronics Conditions

Core Diameter (m) 1.02

Active Core Height (cm) 80

Fuel Smear Density (%) 85

Fuel Volume Fraction 0.55

Cladding Volume Fraction 0.16

Bond Volume Fraction 0.10

Coolant Volume Fraction 0.18
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45 MWt SSTAR Neutronics Performance
Average Power Density (W/cm3) 69

Specific Power (KW/KgHM) 10

Peak Power Density (W/cm3) 119

Peak Linear Power (W/cm) 411

Average Discharge Burnup (MWd/Kg) 72

Peak Discharge Burnup (MWd/Kg) 120

Peak Fast Fluence (1023 n/cm2) 3.6

BOC to EOC Burnup Swing (% delta rho) 0.13

Maximum Burnup Swing (% delta rho) 0.36

Estimated Delayed Neutron Fraction (Beta) 0.00375

BOC to EOC Burnup Swing ($) 0.35

Maximum Burnup Swing ($) 0.96
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Supercritical Carbon Dioxide Gas Turbine 
Brayton Cycle Power Conversion

• Potential improvements over traditional Rankine saturated steam 
cycle
- Higher cycle efficiency at operating temperatures attainable with Pb

primary coolant
- Smaller and simpler secondary side components than Rankine

cycle with potential for cost and staffing reductions – Turbine and 
compressors have remarkably small sizes

- Waste heat can be partially rejected at high temperatures for other 
applications such as desalination

• Potential benefits follow from high density and low work required 
to compress S-CO2 immediately above the critical point

• A commercial-scale S-CO2 Brayton cycle plant has never been 
constructed and operated – Significant development and 
demonstration required
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Supercritical Carbon Dioxide Gas Turbine 
Brayton Cycle Power Conversion
• Remarkably small turbine and compressor sizes reflecting high S-CO2

density
Fluid Location Pressure, 

MPa
Temperature,

° C
Density, 

Kg/m3

S-CO2(SSTAR) Critical point
Cooler outlet

Compressor outlet
Turbine inlet

Turbine outlet

7.37
7.40
20.0

19.99
7.44

30.98
31.25
84.0
541
420

468
369
567
126
56.8

Helium
(Eskom PBMR)

Cooler outlet/
Compressor inlet

Compressor outlet

2.6

7.0

27

104

4.17

8.93

Water 0.1 20 998

Lead 0.1 495 10400

Sodium 0.1 420 828
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Schematic of SSTAR Coupled to S-CO2
Brayton Cycle Showing Heat Transfer Paths
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Schematic of SSTAR Coupled to S-CO2 Brayton 
Cycle Showing Nominal Conditions
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S-CO2 Power Conversion Unit Housing Turbine 
and Two Compressors Connected to Generator
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Transportable Module with Printed Circuit Heat 
Exchangers for HTR, LTR, and Cooler
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Supercritical CO2 Brayton Cycle Layout
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Supercritical CO2 Brayton Cycle Layout
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Supercritical CO2 Brayton Cycle Layout



Nuclear Engineering Division

24

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

What determines the reactor vessel size?
• Transportability by road assumed as a goal

- Approximate flatbed trailer size limitations are a 12.2 m (40 feet) 
length by 2.4 m width (8 feet)

- Greater widths are possible for an oversized load
• Need to fit core and other components inside of vessel diameter

- 1.02 m active core diameter
- 0.297 m reflector thickness
- 2.54 cm core shroud thickness interior to downcomer
- 5.72 cm thick gap between reactor vessel inner surface and 1.27 

cm thick cylindrical liner to provide escape path to Pb free surface 
for CO2 void, in the event of HX tube rupture

- 5.08 cm thick reactor vessel
- Annular Pb-to-CO2 heat exchangers must fit inside of annulus and 

provide sufficient heat exchange performance to realize a significant 
Brayton cycle efficiency



Nuclear Engineering Division

25

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

What determines the fuel pin diameter?
• Optimal value that minimizes the peak cladding temperature for a

fixed fuel volume fraction of 0.55, fuel smeared density of 85 %, 
and Pb core inlet temperature
- Assume fixed cladding thickness = 0.1 cm

• Relationship between fuel pin diameter and pitch-to-diameter ratio
 

Pitch-to-diameter ratio vs. rod diameter 
(FVF=0.55; ρsmear=0.85)
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What determines the fuel pin diameter?
• Also minimizes the core outlet temperature

– Calculations temporarily reduced frictional losses in Pb-to-CO2 heat 
exchangers
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What determines the HX tube dimensions?
• Tube length and pitch-to-diameter ratio that provide 650 °C peak 

cladding temperature and maximize Brayton cycle efficiency
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45 MWt SSTAR Thermal Hydraulics Analyses
• Power                                                    45 MWt (18.5 MWe)
• Reactor vessel height                                    12.19 m (40.0 feet)
• Reactor vessel outer diameter                     3.23 m (10.6 feet)
• Active core diameter 1.02 m (3.35 feet)
• Active core height 0.80 m (2.62 feet)
• Active core height-to-diameter ratio 0.8
• Fuel volume fraction                                      0.55
• Fuel pin outer diameter                                 2.5 cm
• Fuel pin pitch-to-diameter ratio                    1.089
• Core hydraulic diameter                                0.769 cm
• Cladding thickness 0.1 cm
• Fuel smeared density                               85 %



Nuclear Engineering Division

29

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

45 MWt SSTAR Thermal Hydraulics Analyses
• HX tube height                                              4.26 m
• HX tube outer diameter                                    1.4 mm
• HX tube inner diameter 1.0 mm
• HX tube pitch-to-diameter ratio                            1.3
• HX hydraulic diameter for Pb flow                   1.21 cm
• HX-core thermal centers separation height           6.95 m
• Peak cladding temperature                                    650 C
• Core outlet temperature                                         572 C
• Maximum S-CO2 temperature                            541 C
• Core inlet temperature                                430 C
• Core coolant velocity                                           1.09 m/s
• Pb coolant flowrate 2184 Kg/s
• CO2 flowrate 239 Kg/s
• Brayton cycle efficiency                                41.0 %
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Summary
• Results of preconceptual core neutronics and system 

thermal hydraulics calculations indicate that a single-
phase natural circulation SSTAR small modular fast 
reactor concept with a 20-year core lifetime, good core 
reactor physics performance, good system thermal 
hydraulics performance, and a high S-CO2 gas turbine 
Brayton cycle efficiency of 40 % may be viable at an 
electrical power level of 18 MWe (45 MWt)
- Maximum average discharge burnup = 72 MWd/Kg HM
- Maximum burnup reactivity swing during 20 year core 

lifetime is less than one dollar
- Mean core temperature rise is 142 C while the peak 

cladding structural temperature is limited to 650 C


