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I.  Nuclear Hydrogen Projects
 Nuclear Hydrogen Key Technologies Development 

Project
 Develop Key and Basic Technologies for NHDD Project
 12 Year National R&D Program supported by MEST
 Launched in 2006

 NHDD* Project
 Design, Construct and Demonstrate Nuclear Hydrogen System
 16 Year National Project supported by MEST, MKR and Industry
 Expected to start in 2010 or after

NHDD: Nuclear Hydrogen Development and Demonstration
MEST: Ministry of Education, Science and  Technology
MKR: Ministry of  Knowledge and Economy 
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Project Milestones
Phase
Year

1 (Pre-Con) 2 (Conceptual Des.) 3 (Basic Design) 4 (Construction) 5 (Demonstration)
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Nuclear Hydrogen System

 NHDD System: Scaled-Down Demo. Plant (~ 200MWth)
 VHTR dedicated to Hydrogen Production

 VHTR Options
• Prismatic
• Pebble

 Operating Conditions
• Tout = 950oC

 Intermediate Loop Options
 Gas: He, N2-He, …
Molten Salt

 Hydrogen Production Options
 Iodine-Sulfur Thermo-Chemical 
 High Temperature Electrolysis (TBD)
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II. Activities on FP Modeling  in HTGR
Radionuclide Behaviors in VHTR
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FPs & Aerosol Analysis Schematics

Gaseous & metallic 
FPs release from the 

failed/intact fuel 
matrix

Fuel & graphite 
temperatures

Helium & steam 
coolant conditions
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 Fission Product Sources
 COPA code to treat gaseous & metallic FP releases from intact/failed TRISO particles 

and graphite matrix

 FP Transport Model in coolant and plate-out on the surface (GAMMA+/FP)
 Analysis Method

 General species equation – source, decay and transport
 Deposition - Sorption Isotherm

 Numerics - Fractional step method
 Embedded Runge-Kutta in Control Volume
 Implicit scheme for Transport between CVs

 MELCOR-GCR FP Model Development   
 Validation & Verification

 Analytic solution (Numerical test)
 JAEA OGL experiment (JAERI)
 VAMPYR experiment (FZJ) 

FP Transport & Deposition (I)
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FP Transport & Deposition (I)
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Time(s) Analytic GAMMA(RK) Crank-Nicholson Error(%)

(GAMMA/C.N)

0 0 0 0 0

5 22000000000 22000000000 21905083172 0 / 0.43

10 44000000000 44000000000 43810166343 0 / 0.43

15 66000000000 66000000000 65715249515 0 / 0.43

20 88000000000 88000000000 87620332687 0 / 0.43

25 110000000000 110000000000 109525415858 0 / 0.43

<GAMMA vs. Analytic solution>
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FP Aerosol Behavior (II)
 FP Aerosol Behavior

 Treatment of FP aerosols and Dust in primary circuit and containment
 Models for each aspect of aerosol behavior

 Nucleation and growth, agglomeration, deposition, resuspension
 Analysis Method

 Current option - Based on MAEROS model (F. Gelbard, 1980)
• Evolution of aerosol size and chemical composition distribution
• Coagulation, condensation, particle source and removal  

 Future option – CHARM model (C.J. Wheatley, 1988)
• Better for rapidly changing transient conditions

 Validation & Verification
 Nuclear aerosol experiment (K.W.Lee et al., 2002)
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 Nuclear Aerosol Experiment (K.W.Lee et al., 2002)
 Objective

 Validation of coagulation and deposition model

FP Aerosol Behavior (II)
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III.  International Collaborations 
 GIF VHTR SSC (System Steering Committee) 

 Computational Method Validation and Benchmarks (CMVB)  Project
- WP4 : Chemistry and Transport 
. Air Ingress for NACOK block and pebble
. Radionuclide Transport and Plate-out
. Tritium Transport and Code 
. Graphite Dust Production (transportation) and Characteristics 

 Fuel and Fuel Cycle Project
 Material Project 
 Hydrogen Production Tech. and Nuclear Process Heat Appl. Project

 IAEA CRP 

 I-NERI between U.S. DOE and MEST in Korea 

 Bilateral Agreement with GA, INET, PBMR, JAEA
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IV. Further Works in FP Area
 Development of FP Transport & Deposition Model   

 Validation & Verification of GAMMA+/FP Code 
- Improvement of FP module to predict the plate-out behavior 

: Diffusion  Coefficient, Surface Condition
- Acquisition of proper experimental data  

 Improvement of MELCOR  FP Model for HTGR 
- Important parameters are identified and various experimental 

data are required to adjust parameters.  
- Is it sufficient  to predict the plate-out phenomena  with  “Vapor 

Condensation Model” in MELCOR? 

 Development of  Aerosol/Dust Transport Model 
 Just  in Progress, with Preparation of GAMMA+/FP/MEROS 
 Characterization of graphite dust and its Behavior 
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Development of Analytical Model for the 
Fission  Product  Plate-out

 Introduction
 General Theory & Physical Models
 Numerics
 VAMPYR-I Experiment for Code Validation
 Results
 Conclusions

Appendix I
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Introduction
 Objective

 Development of analysis module for fission products (FPs) 
transport and plate-out behavior in a gas cooled system for VHTR 
applications

 To find out major factors contributing to overall uncertainties in 
predicting the plate-out phenomena

 Background
 FP transport and plate-out phenomena has been an important 

safety issue for VHTR to be demonstrated, but there is no suitable 
analysis tool to be applied in Korea

 Need to develop integrated safety analysis module which can be 
applied to various reactor conditions
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General Theory & Physical Models
 What’s plate-out?

 Accumulation of atoms or molecules onto the adsorbent’s surface 
by either chemical or physical attraction (=adsorption) 

 The prediction is quite challenging due to various uncertain factors

 Plate-out Mechanism in a Gas Cooled System
 Dominant removal mechanism for the condensable FPs
 Large influence on the shielding design of the gas-cooled system            

(i.e., shielding materials, planning of maintenance works) 
 In a depressurization accident, plated out FPs would be forced to 

re-entrain or lift off

Accurate prediction is required for the plateAccurate prediction is required for the plate--out distributions!!out distributions!!
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 Governing Equations
 3 regions (i.e., coolant bulk, thin boundary layer, structural 

surface) are used to model the FP transport and plate-out
 Mass conservation throughout the coolant and surface region for 

each species, k

General Theory & Physical Models
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K: Species
C: Bulk concentration in the coolant [m-3] 
S: Surface concentration [m-2] 
B: Concentration within boundary layer [m-3]
λ: Decay constant [s-1] 
h: Mass transfer coefficient [m s-1]
qc: Volumetric source rate [m-3 s-1] 
qs: Surface source rate [m-2 s-1]
D: Diffusion coefficient [m2 s-1] 
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General Theory & Physical Models
 Sorption Models

 2 equations & 3 unknowns
 Experimental forms of sorption isotherms are adopted in order to

evaluate the Bk with ideal gas law (IAEA, 1997)
 Significant role in predicting FP behavior near the surface of 

components 

 Diffusion & Mass Transfer Coefficient
 Diffusion coefficients based on kinematic theory or experiments 

(i.e., Chapman-Enskog, Fuller et al…) 
 Heat and mass transfer analogy for the mass transfer coefficient
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Numerics
 Discretization

 Upwind scheme + Implicit manner in the staggered mesh layout 
(GAMMA+)

 Using different time advancement schemes to advance different 
terms  (Fractional step method)
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 VAMPYR-I Test Facility
 A hot gas sampling tube installed in the AVR reactor 
 To investigate the deposition and diffusion profiles at various 

materials under laminar flow conditions 
 Surface materials investigated were Ti, Cr-Mo, etc. 

VAMPYR-I Experiment for Code Validation

20Diameter [mm]

0.66Flow rate [g/sec]

1.1Pressure [MPa]

80~900Temperature [ºC]

2.2Length [m]

<Principal features of VAMPYR-I test facility>

<A schematic illustration of VAMPYR-I>
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VAMPYR-I Experiment for Code Validation
 Experimental Conditions for Validation

 Experimental runs with sufficient and post experimental data  
 Plate-out distributions for I-131 and Cs-137 have been 

investigated along the test tube
 Temperature profiles along the test tube
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Results
 Plate-out Distributions for I-131

 The plate-out is dominant over the lower temperature region
 Diffusion coefficient plays an key role in predicting the adsorption 

of I-131 
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Results
 Plate-out Distributions for Cs-137

 Smaller dependency on the temperature profile than I-131
 The measured data are mainly located between the two results 

calculated by the two diffusion coefficient formulas. 
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Results
 Sensitivity Analysis for surface oxidation (I-131)

 Additional calculations for oxidized surface condition 
 Oxide layer on the high temperature region dramatically reduces 

the deposition amount of I-131 
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Results
 Sensitivity Analysis for surface oxidation (Cs-137)

 Surface oxidation promotes the deposition of Cs-137 on the high 
temperature region 

 Formation of chemical compound of Cs element in AVR? 
[Moorman, 2008]  different desorption energy & diffusion coeff.
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Conclusions (I)
 A one-dimensional FP transport calculation module 

has been developed to predict the FP transport and 
plate-out behavior in a gas-cooled system 

 The developed module has been applied to the 
experimental circuits of VAMPYR-I 

 It was found that the module can describe the plate-out 
phenomena reasonably
 Overall differences between the prediction and the measurements 

are less than a few orders of magnitude
 Such amount is comparable with the existing code, PLAIN
 Various uncertain factors such as surface condition, dust effect, 

chemical forms, etc…
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Conclusions (II)
 Two meaningful factors on the plate-out phenomena 

were found through sensitivity analyses
 Diffusion coefficient was found to play an important role in 

predicting the adsorption of I-131 and Cs-137
 Surface conditions of the coolant circuit can also be major source 

of the uncertainty in the prediction of the plate-out activity of I-131

 Thus, the impacts from the surface oxidation 
condition as well as the diffusion coefficient have to 
be quantified in the prediction of the FP plate-out if 
there is no experimental evidence
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Modeling of the FP plate-out
with MELCOR

 Objectives 
 MELCOR for HTGR 
 OGL Experiment for Code Validation
 Results of MELCOR Simulation  
 Summary and Discussion 

Appendix II
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Objectives

 Improve MELCOR so that it can simulate the FP phenomena 
in a HTGR.

- Plate-out, H3 and Dust  

 Current Models for Thermal hydraulic, Aerosol, FP release,  

transport and removal in MELCOR will provide the basic

structure to “MELCOR  for HTGR”

Phase-1  :  Improve “plate-out” model  

Phase-2 :  Implement the function to simulate  H3 behavior

Phase-3  :  Application of aerosol model to the dust behavior

Phase-4 :  Model Integration and V&V
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MELCOR model improvement is needed to simulate the “plate-out”

Review of Current FP models

YesYes(No)Diffusion of ‘Ag’ atom into a metal 

Direct solve3 types (Linear,

Freundlich, 
Langumir)

Only one

(saturation)
Type of surface B.C

YesYesNeed ModifyMass transfer coefficient

YesYes(No)Adsorption/desorption on the wall

YesYesNoDecay during the transport

3  (Bulk

Bound-layer

Wall surface)

3 ( Bulk

Bound-layer

Wall surface)

2

(Bulk

Wall surface)

Number of components to be accounted 

inputinputCalcul / inputFP vapor source generation

User inputUser inputCode calculTime dependent data (Tg, Pg, dm/dt)

PLAIN
(JNES)

PADLOC
(GA)

Codes

Model

MELCOR
(SNL))
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Estimation & Improvements of MELCOR for VHTGR

 Estimation and Improvement of “Vapor Condensation Model 
(=plate-out)” in MELCOR.

 Effect of ‘new mass transfer coefficient’ being predicted from PADLOC 
code and the user defined “Lennard-Jones” values (,/) on the plate-out

 Effect of multi-nodalization of the regions (where the changes of gas 
temperature are rapid) on the amount and distribution of the plate-out 

 Comparison of analytical solution for the plate-out between MELCOR
and PADLOC. 

 Derivation of new analytical solution that can consider the decay phenomena
in calculating the plate-out and their numerical test.

 Each items has been assessed using OGL-1 test data.
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Analysis Model for simulating the OGL-1 with MELCOR

Assumption

 The FP release rate was un-measured, therefore their rates were 
assumed arbitrary values and it was injected into the exit of core.

- Cs-137 release rate=1.0x10-11 kg/s [124 Ci/s]

- I-131 release rate= 1.0x10-12 kg/s [0.87 Ci/s] were kept over the transient

 No chemical interaction between iodine & cesium during transport
was assumed (Cs, I2).

 Once through modeling, I.e, ; It was assumed that the released FPs
was completely filtered at the end of circuit, i.e., the released FP can 
not be returned 

Analysis Model

 The TH conditions such as pressure, temperature and flow velocities 
were followed as that of the OGL-1 test data.
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Quick Review on the FP Condensation Model in MELCORQuick Review on the FP Condensation Model in MELCOR

where      yk = mole number of FP k, yn = mole number of gas n   (n=He)
Dk,n = binary diffusivity of FP k in gas n
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Recalculation of the diffusion coefficient (D k,g) of FP, k

 From PADLOC code

where   D = FP diffusion coefficient in He [cm2/s]

Tc= He gas temperature [k]

Pg = He pressure [atm]

M= fission product molecular weight [g/mol]

 To predict the FP vapor diffusivity under high temperature (SC7111)

- Now, “ Lennard-Jones ” values in MELCOR are limited to some FP such as Xe, I2.

, I2 ( = 4.982,  / = 550.0) [1]

- In this study, the LJ values for Cs ( = 4.764,  / = 842.157 ) came from [2]

- LJ values for FP under high temperature more than 1000 K are rare.   
[1]: R. Byron Bird, “Transport Phenomena”, John Wiley & Sons, Inc, 1960, pp 744-745.

[2]: J. chem. phys. 126, 014302 (2007), “hard-wall potential function for transport properties of alkali metal vapors”
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OGL-1 Experiment 

FP injection

He Tk

core

In-pile

Duct-A

Duct-B

HX-1 HX-2

cooler

Dump

 OGL-1 experimental facility is in the JMTR in 
JAERI.

- study on the FP behavior in the primary 
circuit in HTGR (plate-out)

 Total experimental circuit was about 100 m
 The measurement was done after 500 hr 

operation.
 The system pressure was 3 Mpa.
 The helium injection rate was 45 g/s 

for cycle-47.
 The flow velocity was in the range from 

10 to 60 m/s.
 FPs were released from fuel (TRISO-II) but 

their rate were not measured.

100% filtering
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The circuit temperature have effect on the amount of plate-out and its distribution.
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Effect of multi-nodalization on the I131 plate-out 
for OGL-1 experiment (cycle-47)

MELCOR default model could not predict the I-131 plate-out at all over the circuit.

I-131 plate-out zone
EExp:  750~350 Kxp:  750~350 K
MELCOR :  350~450 KMELCOR :  350~450 K
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The plate-out of I131could only be 
occurred  when the injection rate 
become to increase upto unreal-
istically high value !
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Effect of multi-nodalization on the Cs137 plate-out 
for OGL-1 experiment (cycle-47)

MELCOR  follows  the Cs-137 plate-out data only at the low temperature range (700~300K).

Cs-137 plate-out zone
EExp:  900~550 Kxp:  900~550 K
MELCOR :  700~300 KMELCOR :  700~300 K
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Sensitive to

- Amount of FP release rate from core 
(Cal: ~1.0E-4 kg/s, Exp: non-exist)

- Flow velocity ( Cal: 10 m/s,   
Exp 60~10 m/s)

- Lennard-Jones value
- The wall surface temperature 

(but overcomed by the multi-nodaliz)
- Chemical form of Iodine & Cs under

high temperature and helium gas
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FP injection

core

Duct-A

Duct-B

HX-1 HX-2

cooler

0% filtering
FPs circulate the OGL-1 LOOP

HeaterHeater

There are no clear difference of plate-out 
between ‘ once through ’ & ‘ circulation ’
modeling on OGL-1 test.

Simulation of OGL-1 Experiment with a Circulation
(comparison between once-through & circulation modeling)

In-pile
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Comparison of the calculated ‘plate-out’ concentration between PADLOC and 
MELCOR using the analytical solutions

The analytical solution from MELCOR showed larger amount of plate-out 
than that of PADLOC.
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Effect of the decay phenomena on the plate-out
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where V     = a space volume
Ma,k = Ca,k / V = mass of FP ‘k’ in bulk space
Mi,k = mass of condensed FP ‘k’ species on the surface i
k = decay constant of FP ‘k’

= saturation concentration of FP ‘k’ in bulk space at the 
temperature on the surface ‘i’

ki = mass transfer coefficient of FP k for the surface i

s

k.iM

Governing equations for plate-out considering the decay phenomena
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Derivation of the Analytical Solutions for plate-out
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If (-k*DT .LT. EXPMIN) THEN
e –(k*DT)  1-k*DT

ELSE
e –(k*DT)

ENDIF

Fitting for the case of without the decay model
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Simulation of OGL-1 with “decay model”

Because of too much Cs deposit and
the decay phenomena made  bulk-
concentration reach equilibrium.

The change of surface concentration
could be seen according to the T1/2.

Bulk I2 concentration was increased
continuously because of the modeling 
of the fluid re-circulation and no-
occurrence of the I2 deposit. 

Cs: bulk Cs: deposit

I2: bulk
I2: deposit

The model for simulating the decay  phenomena was implemented inThe model for simulating the decay  phenomena was implemented into to 
the platethe plate--out model in MELCOR code.out model in MELCOR code.
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Summary & Discussion (1/3)

 KAERI has a plan to apply the MELCOR to simulate the plateout/dust/H3 
behavior in VHTGR.

 The MELCOR was applied to simulate the OGL-1 test (cycle-47) and the 
following results were obtained.

- Experiment data showed that the plate-out for Cs and iodine were 

occurred over the entire temperature zones (1000K ~ 300 K). 

- But MELCOR showed that the any plate-out for iodine was not occurred 

over the entire circuit and the plate-out for Cs in the high temperature 

zone (700 K) could not be predicted.
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Summary & Discussion (2/3)

- The influencing parameters on the plate-out phenomena were identified;
o  FP release rate from the core (TRISO)

o  Gas velocity 
o  Lennard-Jones parameter values 
o  Degree of the nodalization of circuit
o  Chemical form of Cs & I  under the high tempertaure/He

- The important data for modeling the experiment were not available.
o  The degree of the gas filtering
o  FP release rate and Transient FP concentration data in 

the atmosphere and  the surface.
o  Velocities at each components 

 The analytical solutions considering the decay phenomena were derived for 
MELCOR and will be implemented after the numerical testing through the 
modeling of the circulation.
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Summary & Discussion (3/3)

 The comparison of the calculated amount of plate-out 
between MELCOR and PADLOC showed that MELCOR 
model have a tendency of over-prediction.    

 An answer is required whether the MELCOR modeling on 
the plate-out with using the saturation concentration in the 
atmosphere based on the surface temperature and its 
vapor pressure is proper or not.


